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Results from a wide range of direct numerical simulations of forced-dissipative, 
differentially rotating two-dimensional turbulence are presented, in order to delineate 
the broad dependence of flow type on forcing parameters. For most parameter values 
the energy spectra of simulations forced at low wavenumbers are markedly steeper 
than the classical kP3 enstrophy inertial-range prediction, and although k-3 spectra 
can be produced under certain circumstances, the regime is not robust, and the 
Kolmogorov constant is not universal unless a slight generalization is made in the 
phenomenology. Long-lived, coherent vortices form in many cases, accompanied by 
steep energy spectra and a higher than Gaussian vorticity kurtosis. With the 
addition of differential rotation (the /3-effect), a small number of fairly distinct flow 
regimes are observed. Coherent vortices weaken and finally disappear as the strength 
of the /3-effect increases, concurrent with increased anisotropy and decreased 
kurtosis. Even in the absence of coherent vortices and with a Gaussian value of the 
kurtosis, the spectra remain relatively steep, although not usually as steep as for the 
non-rotating cases. If anisotropy is introduced at low wavenumbers, the anisotropy 
is transferred to all wavenumbers in the inertial range, where the dynamics are 
isotropic. 

For those simulations that are forced at relatively high wavenumbers, a well 
resolved and very robust k-3 energy inertial range is observed, and the Kolmogorov 
constant appears universal. The low-wavenumber extent of the reverse energy 
cascade is essentially limited by the /3-effect, which produces an effective barrier in 
wavenumber space at which energy accumulates, and by frictional effects which 
must be introduced to achieve equilibrium. Anisotropy introduced at  large scales 
remains largely confined to the low wavenumbers, rather than being cascaded to 
small scales. When there is forcing at  both large and small scales (which is of 
relevance to the Earth’s atmosphere), energy and enstrophy inertial ranges coexist, 
with an upscale energy transfer and downscale enstrophy transfer in the same 
wavenumber interval, without the need for any dissipation mechanism between 
forcing scales. 

1. Introduction 
Since the introduction of Kolmogorov’s (1941) inertial-range theory of three- 

dimensional turbulence, there has been much interest in determining whether such 
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inertial ranges do, in fact, exist. Data from a variety of sources (beginning with the 
oceanic measurements of Grant, Stewart & Moilliet 1962) have largely confirmed the 
prediction that the inertial-range energy spectrum is proportional to k-i (where k is 
the wavenumber), with a constant spectral flux of energy directfed toward small 
scales. 

The situation is somewhat different for two-dimensional turbulence (Batchelor 
1969; Kraichnan 1967), because of the conservation of vorticity on fluid parcels in 
inviscid flow. The twin constraints of energy and enstrophy (mean-squared vorticity) 
conservation lead one to postulate the dual existence of an inverse energy cascade, 
with the energy flux directed toward large scales, and a cascade of enstro h toward 
small scales. The inertial-range prediction for the energy cascade is k-3, as in the 
three-dimensional case. The forward enstrophy cascade has a predicted inertial- 
range spectrum proportional to  k-3, with logarithmic corrections due to non-local 
modal interactions (Kraichnan 1967). 

The first reasonably high-resolution numerical investigations of two-dimensional 
turbulence did not yield entirely expected results, namely space-filling turbulent 
flow with a uniform cascade of enstrophy to small scales. Perhaps the most noticeable 
aspect, especially apparent in simulations of decaying two-dimensional turbulence 
by Fornberg (1977) and McWilliams (1984), but also evident in studies of 
forceddissipative two-dimensional turbulence by, among others, Basdevant et al. 
(1981) and Legras, Santangelo & Benzi (1988), was the appearance of long-lived 
coherent structures. These approximately circular structures often ended up 
dominating the flow and introduced a type of spatial and temporal intermittency 
that classical inertial-range and closure theories appear not to be able to account for. 

A common feature shared by most of the forced-dissipative direct numerical 
simulations of two-dimensional turbulence is energy spectra steeper than k-3 in the 
enstrophy inertial range, possibly (although not unequivocally) due to the presence 
of coherent structures. With the possible exception of some early experiments by 
Lilly (1972) (in which the resolution was probably too low to give accurate results), 
the existence of the kP3 range has not been confirmed by direct numerical 
simulations. (Decaying turbulence cannot of itself be compared directly to inertial- 
range predictions based on statistically stationary forced dissipative situations. 
Thus, although decay simulations may exhibit transient k-3 spectra depending on 
initial conditions (Santangelo, Benzi & Legras 1989), it is rather difficult to interpret 
such results in relation to inertial-range theory.) On the other hand, forced 
simulations with fairly low inertial-range resolution (Lilly 1972 ; Frisch & Sulem 
1984; Herring & McWilliams 1985) indicate the actual existence of the k-t energy 
inertial range. 

The poor comparison with enstrophy inertial-range predictions is troubling, since 
without a Kolmogorovian-like phenomenology to  build upon, the foundations of 
some of the more elaborate theories of turbulence must be suspect when applied in 
two dimensions. Although the DIA (Direct Interaction Approximation) itself does 
not a priori assume Kolmogorovian scaling, its derivatives, such as the test field 
model, certainly take little account of spatial intermittency (Herring & McWilliams 
1985). Renormalization group theories (at least as applied in three dimensions) 
generally assume some kind of Kolmogorovian scaling (Yakhot & Orszag 1986). The 
coherent structures provide one obvious candidate for the differences, since in both 
two and three dimensions intermittency (manifested by non-space-filling structures) 
will provide a correction to  the inertial range exponent. If this is so, then simulations 
in which coherent structures are not manifest should presumably yield spectra closer 
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to k-3. (On the other hand, since the observed spectra for fully three-dimensional 
turbulence do seem to lie close to the - %  prediction, corrections due to intermittency 
(Kolmogorov 1962) appear small in that case.) 

As well as its inherent interest, two-dimensional turbulence is of much geophysical 
relevance. However, large-scale geophysical flows have the added complication of 
differential rotation: the presence of a northward gradient of the local vertical 
rotation rate (the /?-effect) can significantly alter the characteristics of a turbulent 
flow. (Other important characteristics of real geophysical fluids, such as stratification, 
will not be addressed here.) If the /?-effect is strong enough, turbulent transfers 
between modes are inhibited by excitation of Rossby waves, resulting in an arrest of 
the reverse energy cascade (Rhines 1975; Holloway & Hendershott 1977). In  
addition, the /?-effect can destroy the emergence of circular vortices in decay 
simulations (McWilliams 1984 ; Holloway 1984), and while some vortices have been 
noticed in simulations of decaying and forced turbulence with /? (Salmon 1982; 
Basdevant et al. 1981), this case has not been extensively studied. 

In this paper, we will present a series of numerical simulations that address some 
of these problems. We particularly investigate the effects of differential rotation in 
forcedAissipative, statistically steady, flows. Differential rotation is interesting not 
only for its geophysical importance but because through wave radiation i t  provides 
a mechanism for the destruction of coherent vortices. Although decaying simulations 
perhaps present the mechanisms of turbulence (e.g. vortex merger, wave propa- 
gation) in their purest form unencumbered by external agencies, only in 
forced-dissipative simulations can the energy and enstrophy inertial ranges be 
unambiguously established. We present simulations of both the energy and 
enstrophy inertial ranges, confirming the existence of a k-g energy inertial range over 
a broad range of conditions, with a numerically very well-resolved inertial range. The 
forward enstrophy cascade is much more delicate; we show simulations with a 
spectral slope close to  -3  with no differential rotation, as well as simulations 
(generally with non-zero @-effect) which have relatively steep spectra and vorticity 
kurtosis values that may or may not be close to Gaussian. In addition, stable 
coexistent inertial ranges (i.e. both energy and enstrophy) are found when forcing 
occurs a t  both high and low wavenumbers. 

The outline of the paper is as follows. In  $2,  the numerical model is briefly 
described. The two sections following describe numerical experiments that  are forced 
at low wavenumbers, allowing for the examination of enstrophy inertial-range 
dynamics. Section 3 discusses this case in the absence of the /?-effect, while $4 deals 
with the /? + 0 case. I n  $5, we will describe simulations similar to those in $$3 and 4, 
but which are forced at relatively high wavenumbers to allow for resolution of the 
energy inertial range. Section 6 describes simulations forced simultaneously a t  low 
and high wavenumbers. Section 7 contains discussion and conclusions. 

2. The model 

for an incompressible, homogeneous fluid on a /?-plane : 
The model equation used in this study is the two-dimensional vorticity equation 

where t,h is the stream function, 5 = Vz$ is the relative vorticity, /? is the northward 
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gradient of the Coriolis parameter, F and D represent forcing and dissipation, 
respectively, and J is the two-dimensional Jacobian operator: 

For a doubly periodic domain, we may express the vorticity and stream function in 
terms of a complex Fourier series, e.g. 

where $: = ?,k-k to ensure reality of the physical field. Then the equation of motion 
takes the following form : 

& f Jk + ik,p = F k  +D,, (2.4) 

where Jk = Cw a,, f & and a,, are certain coefficients, whose precise form does not 
concern us, which vanish unless k, p and 4 form a vector triad. The nonlinear term 
in (2.4) is solved using the staggered grid algorithm of Patterson & Orszag (1971) 
with full dealiasing. Timestepping is done using the leapfrog method with a weak 
Robert filter applied every timestep to  eliminate the computational mode and with 
the dissipation term lagged by one timestep for numerical stability. Most of the 
numerical experiments that  we will describe have a maximum wavenumber 
k,,, = 128 or k,,, = 256, resulting in equivalent grid point resolution of 2562 and 
5122, respectively. The resolution chosen, although not the highest achievable using 
current computers, enables a broad parameter regime to  be explored with computer 
(and human) resources that are not prohibitive. 

The dissipation function, D, is modelled using a high-order 'diffusion' (or scale 
selective filter) to dissipate the enstrophy that accumulates at the smallest resolved 
scales, and a linear drag to dispose of the energy that builds up at the largest scales : 

(2.5) 

Simulations were performed using a conventional viscosity, for which n = 2, a 
biharmonic friction, for which n = 3, and a ' hyperviscosity ' or ' superviscosity ', for 
which n may be as high as 9, with few qualitative differences. We have also used the 
anticipated potential vorticity parameterization (Sadourny & Basdevant 1985 ; 
Vallis & Hua 1988). The advantages of higher-order viscosities are well known and 
lie in the higher effective Reynolds numbers achievable because dissipation is much 
more scale selective. Nevertheless, some simulations were carried out with a 
conventional viscosity as a check that the results obtained are not artifactual. The 
value of the diffusion coefficient, v,, is calculated every few timesteps during the 
simulation using the inverse r.m.s. vorticity as a timescale and l/kmax for a 
lengthscale, e.g. 

D = aV2$ + v n  V"$. 

Y 

where y is a tuning factor typically of the order of unity. This is rather similar to 
using a Smagorinsky viscosity (Smagorinsky 1963). The linear drag coefficient, a, is 
held constant through some range of low wavenumbers (beginning at the lowest 
wavenumber), then is set to zero for all wavenumbers above an arbitrary cutoff and 
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thus has no direct influence in the simulated inertial ranges. Both the value of a and 
the cutoff wavenumber remain constant during any given experiment, but are 
variable from run to run. 

For the forcing function, F ,  a random Markovian formulation is used: 

F,, = A(1 -R2)~eiB+RF,-,, (2 .7)  
where 0 is a random number in [ 0 , 2 n ] ,  d is the (wavenumber-dependent) forcing 
amplitude, and the subscript on F denotes the timestep. R is a function of the 
timestep and the forcing correlation time (t,),  being equal to zero for white noise and 
increasing to unity for infinite correlation time. The forcing is applied to all 
wavenumbers (with a different value of 0 for each) whose magnitude falls into a 
defined range, e.g. for 10 < Ikl < 14. This forcing range, as well as the values oft, and 
A^ remain constant during any given experiment, but are variable from run to run. 

Simulations are run until a quasi-steady state is reached that is characterized by 
fluctuations in the total energy and enstrophy about some well-defined mean value 
and when the average energy and enstrophy injection rates are approximately equal 
to their respective dissipation rates. At this point, the simulations are continued for 
an extended period to obtain robust averages. 

3. Low-wavenumber forcing, isotropic cases 
3.1. Flows with coherent structures 

For a fairly wide parameter range, the vorticity field has a significant component 
made up of coherent vortices that are very long-lived compared with typical flow 
timescales, such as a large-scale advective time, or an eddy turnover time. The 
remainder of the field is a more typically 'turbulent' background flow (see also 
Basdevant et al. 1981, and Legras et al. 1988). Typical flow diagnostics show distinct 
variations from Gaussian inertial-range assumptions and predictions. For instance, 
the vorticity kurtosis (kurtosis = Ku(y )  = ([4)/(F)2 where ( ) denotes an area 
average) attains values significantly greater than the Gaussian random value of 3,  
indicating some degree of spatial intermittency. However, the value of the stream- 
function kurtosis remains in the vicinity of 3.  (The appearance of coherent structures 
is defined subjectively. However, they are always accompanied by high values of the 
vorticity kurtosis.) 

Coherent structures emerge under a wide range of circumstances, largely 
independent of the resolution (provided it is reasonably high), the forcing range, the 
forcing amplitude, the particular form of the enstrophy dissipation function, or the 
initial conditions, though the specifics of each flow will, of course, be different. 
However, low-wavenumber dissipation can prevent vortices from emerging in some 
cases, as we will see in 53.2. Figure 1 ( a )  (plate 1) presents a map of the vorticity field 
from a typical forced experiment. Note that coherent structures are present a t  a 
range of scales, and that the scale of the strongest vortices is not determined by 
domain size or by the extent of the low-wavenumber dissipation range, but largely 
by the forcing range. We also see vortices with significant strength at scales smaller 
than the forcing scale, but very few larger than this scale. 

Examination of the isotropic (averaged over angles in wavenumber space) energy 
spectra, E(k) ,  of flows that exhibit coherent structures yields two interesting 
observations. First, there are two somewhat distinct spectral slopes in the inertial 
range between the forcing and dissipation wavenumbers, with the transition between 
the two regimes occurring at  an approximate wavenumber k, (figure 2a) .  As 
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k k, 

FIGURE 2. (a) Average enstrophy spectrum (k2E(k) )  from a simulation forced in the range 
25 < k < 30 (denoted by kf). The slope of the lower-wavenumber range (approximately 30 < k < 60) 
is -2.5, the slope of the higher-wavenumber range (approximately 60 < k < 110) is - 1.6. The 
dashed line indicates the peak (k = 63) in the kurtosis plot in ( b ) .  ( b )  The kurtosis of the vorticity 
field (solid curve) and stream function (dashed curve) reconstructed using only modes 1 to k, plotted 
as a functionof kt, where k, is the truncation wavenumber defined in the text. 

mentioned by Legras et al. (1988), the lower (smaller wavenumber), steeper range 
seems to be due to the presence of vortices. Figure 2 ( b )  shows some support for this 
assertion. The vorticity field from a typical simulation is reconstructed using only 
those Fourier modes with wavenumber magnitude smaller than a given truncation 
wavenumber, k,, which is less than or equal to the maximum wavenumber resolved 
by the full model, k,,,. We can then plot the kurtosis of the reconstructed field as 
a function of truncation wavenumber. It is seen in figure 2 (b )  that the reconstructed 
field with the highest kurtosis contains only wavenumbers 1 to k, x 63, implying 
that the high kurtosis of the true field is principally due to the contribution of these 
modes. (The reason for the decrease in kurtosis for k > k, is unknown.) 

The value of k, depends to some degree on numerical resolution, becoming larger 
with increasing resolution and decreasing viscosity. While k, is not what is typically 
referred to as the dissipation wavenumber, it does seem to represent the range of 
wavenumbers for which the effect of the dissipation is somehow felt. That is, vortices 
of scales somewhat larger than the effective Kolmogorov scale can nevertheless feel 
the effects of viscosity, if indirectly. As the Kolmogorov scale increases with 
increasing resolution, smaller-scale vortices are allowed to evolve essentially 
frictionlessly, thus extending the spectral range affected by the presence of vortices. 
Whether k, will continue to grow without bound as the numerical resolution gets 
very large is an open question. 

The second characteristic of these spectra is the fact that both of the enstrophy 
subranges have slopes that are significantly steeper than the K 3  (energy spectral 
slope) behaviour predicted by classical inertial-range theory. In addition, the slopes 
that are seen depend strongly on the particular forcing parameters being used, 
particularly the forcing range and forcing correlation time, reflecting the strength 
and scale of the structures present. Corrections have been made to the inertial-range 
arguments to account for spatial and temporal intermittency based on the 
identification of subdomains of ' active ' turbulence being principally responsible for 
the enstrophy cascade (Basdevant et al. 1981 ; Benzi et al. 1986), resulting in the 
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(a) 

Plate 1 

FIGURE 1. Relative vorticity from typical simulations with km,=128. (a) Forced in the range 104 k C 14. 
(b) Forced in the range 10 6 k *I 14 with k,=3.3. All other parameters and the plotting scale are the same as 
in (a). (c) Forced in the range 10 < k 6 14 with &=4.8. All other parameters and the plotting scale are the 
same as in (a). (d) Same as (c) except that the plotting scale has been changed to highlight elongated flow 
structure. (e) Forced in the range 80 C k 6 84. v) Forced in the range 10 < k 6 14 and 80G k < 84. (Although 
simulations similar to those shown in (e) and v) were also performed with high-wavenumber forcing in the 
range 160 B k i 165, but the forcing scale is then too small to be resolved by the eye in these figures.) 

MALTRUD B VALLIS (Facing p.  326) 
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FIGURE 3. Flow diagnostics from a simulation forced in the range 10 Q k < 14 exhibiting no 
coherent structures with low-wavenumber dissipation acting for k < 30. (a) Time-averaged energy 
spectrum. ( b )  Time series of vorticity kurtosis (solid curve) and stream-function kurtosis (dashed 
curve). (c) Time-averaged syctral enstrophy flux, ~ ( k ) ,  as defined by (3.3). ( d )  The Kolmogorov 
constant G,(k) = k3E(k)v(k)-s .  The average value of C ,  is 0.7. 

expectation of steeper spectral slopes. Unfortunately, it is difficult to locate the 
active domains precisely enough to invite quantitative comparison between our 
numerical simulations and intermittency theories. In  addition, these theories, again, 
predict a single spectral slope for the inertial range, in contrast to the two distinct 
slopes seen here and by Legras et al. (1988). 

3.2. Flows without coherent structures 
While most of our simulations with p = 0 exhibit coherent structures, it is possible 
to find circumstances where vortices apparently do not form. This is done by 
extending the range of the low-wavenumber dissipation up to a wavenumber that 
significantly exceeds the upper limit of the forcing range, although not extending 
into the inertial range. In addition, the forcing correlation time must be quite short, 
typically a small multiple of the numerical timestep. Figure 3 shows this type of 
simulation where dissipation destroys any structures that weakly begin to form 
initially, resulting in the average vorticity kurtosis being approximately the random 
value of 3. 
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The energy spectra that result from these types of flows are quite close to being 
proportional to k-3 (figure 3a), further supporting the general assertion that coherent 
structures are associated with steep spectral slopes. (However, in the next section we 
present some results of spectra steeper than kP3 with no coherent structures.) Of 
course, the spectral slope in the inertial range, should, according to the 
Kolmogorovian paradigm, not be dependent on such details as the forcing correlation 
timescale. The dependence of the spectral slope on such details is therefore an 
indication of the non-universality of that range. Given the predicted inertial-range 
form, 

where 7 is the enstrophy cascade rate (and ignoring logarithmic corrections) we can 
solve for the universal constant C, by fitting our spectrum to the prediction. 

From the spectral form of the equation of motion (2.4), we obtain the enstrophy 
equation for a single Fourier mode, 
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E ( k )  = C , 7 k 3 ,  (3.1) 

and we can see that the enstrophy flux through wavenumber space is 
k 

Fl&k) = Re C [F J ,  
14=1 

(3.3) 

since [F J ,  is the divergence of this flux. The cascade rate, p ( k ) ,  is equal to the average 
of FE,(k) in the inertial range in a statically steady state. Figure 3 ( c )  shows that the 
enstrophy flux is quite flat throughout the inertial range in our calculation. If C, is 
truly constant, then a plot of 

should be independent of k in the inertial range. Figure 3 ( d )  exhibih this type of plot 
which shows that C,(k)  is essentially constant, except for some noise presumably due 
to  finite averaging. The mean value in this case is C ,  = 0.7, which does not compare 
well with the value C ,  = 1.74 that has been predicted by Leith & Kraichnan (1972) 
using the test field model closure. Additional simulations of this type have shown 
that the value of C, is somewhat sensitive to  some model parameters, such as the 
forcing amplitude and correlation time, suggesting the importance of non-local 
interactions. Figure 4 (a, b )  shows the effect of changing the forcing correlation time 
(tP) and the forcing amplitude (d) on the spectral slope, and figure 4(c) shows the 
effect of these changes on the value of C , ( k ) .  (Sensitivity to  forcing parameters is also 
seen by Basdevant et al. (1981), as very different structures and spectral slopes result 
if negative viscosity instability forcing is used instead of random stirring.) 

This apparent non-universality in the k-3 range can be investigated by examining 
the derivation of (3.1), namely that the enstrophy cascade rate scales as the ratio of 
the enstrophy and a timescale 7, (e.g. Vallis 1985). That is 

C,(k)  = E ( k )  7(k)-%k3 (3.4) 

where the proportionality constant C ,  is chosen for consistency withj3.1). If for the 
eddy turnover time we use the local expression 7 1 ( k )  = [ k 3 E ( k ) ] - ~ ,  then we get 
equation (3.1) for the spectrum and (3.4) for the Kolmogorov constant. If we chose 
the potentially non-local turnover time 
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PIQIJRE 4. Results from simulations forced in the range 10 < k < 14 with low-wavenumber 
dissipation acting for k < 30. (a)  Average enstrophy spectra multiplied by k.  The solid curve is the 
same data seen in figure 3(a). The dashed curve has a forcing correlation time that is 12.5 times 
greater and has been shifted down for clarity. (b) Average enstrophy spectra multiplied by k .  The 
solid curve is the same as in (a). The dashed curve has a forcing amplitude that is 4 times greater 
and has been shifted $own for clarity. (c) The Kolmogorov constant C, (k )  = [7 (k )7 (k ) /kaE(k) ] - ; ,  
where 7 ( k )  = [k3E(k)]-s.  The average value of the solid curve (corresponding to the solid spectrum 
in a and b) is 0.7. The average value of the short-dashed curve (corresponding to the dashed 
spectrum in a) is 1.3. The average value of the long-dashed curve (corresponding to the dashed 
spectrum in b) is 1.4. (d )  The modified Kolmogorov constant C,(k)  = [7 (k )7 (k ) /k3E(k) ] - f ,  where 
7 ( k )  = [J:p*E(p) dp1-X for the same cases as in (c). The average value of all of the curves is 2.9. (The 
apparent correlation in the curves is due to the particular algorithm used for calculating isotropic 
spectra.) 

(used in deriving the log-corrected spectrum E ( k )  - 7k3(log Elk,)$ by Kraichnan 
1967), we obtain the expression 

(3.7) C,( k) = y( k)-fk%( k ) h 2 (  k)-f . 
as a modified Kolmogorov constant. This expression actually yields much more 
universal behaviour. Figure 4 ( d )  shows that the values of C,(k)  are almost identical 
to each other when we use 72(k) (as calculated from the model spectra) in (3.7) for the 
same model integrations as seen in figure 4(c). 
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Since the energy spectrum is strongly peaked in the forcing range in this class of 
simulations, the integral in the definition of r2 is dominated by contributions from 
wavenumbers in the vicinity of k,, so r2 is constant in the inertial range. This implies 
a non-local interaction in k-space, with the large scales directly straining much 
smaller scales. Hence we would not necessarily expect the Kolmogorov constant C ,  
(based on a hypothesis of local interactions in k-space) to be universal under these 
conditions. The fact that we do see some kind of universality here is reminiscent of 
a large-scale straining occurring in passive-scalar advection, as discussed in Holloway 
& Kristmannsson (1984), Lesieur & Herring (1985), and Babiano et at?. (1987), 
implying that the small-scale vorticity is here behaving as a passive scalar. 

4. Low-wavenumber forcing with anisotropy 
The addition of a finite value of P to simulations similar to those described above 

can alter the flow to varying degrees, depending on its strength. We measure this 
strength by defining a wavenumber, k,, a t  which the nonlinear term in the equation 
of motion (J($, 5)) is of the same order as the Rossby-wave propagation term 
(Pa$/ax). k, then represents the approximate location of a transition zone between 
turbulent and wavelike regimes. The particular choice of the flow timescale in this 
scaling process can result in different definitions for k,. If we suppose that k, lies a t  
the lower-wavenumber end of a reverse energy cascade, then it is sensible to scale k, 
in terms of the energy cascade rate E and p, yielding 

Similarly, 

However, 

using the enstrophy cascade rate 7 gives 

the physical circumstance when (4.2) would be appropriate is not as clear. 
If the energy is concentrated near k,, then we can eliminate e in favour of the mean 
energy u2 using the dimensionally correct substitution u2 - dkjg. We then recover 
Rhines’ (1975) expression 

k; - ($7 (4.3) 

(The factor of 2 in the denominator is a little arbitrary here.) The expression of 
Holloway & Hendershott (1977) can similarly be recovered from (4.2), namely 

(4.4) 

where CrmS is the root-mean-square vorticity, as well as by independent reasoning 
given therein. For most of our simulations we are concerned with rather small values 
of kp, which do not extend into the enstrophy range, and thus (4.1) is appropriate. 
Since a reverse energy cascade rate is not always resolved, we find i t  simpler just to 
calculate (4.3). Using k? was found to make no qualitative difference in our cases. 

Beta has two somewhat distinct effects on the flow. One is to inhibit the reverse 
cascade of energy to large scales, by the scattering of ‘turbulent’ ’ energy to ‘wave ’ 
energy, the transition occurring approximately at k,. The second is to introduce 

kF--, Y 
Crm, 
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anisotropy. Indeed, if the ,&effect is sufficiently strong, a possible end state for 
decaying turbulent flows on the ,%-plane is one of alternating zonal (east-west) jets 
(Rhines 1975). Scaling arguments suggest that the direct effects of /3 in inducing 
anisotropy are confined to wavenumbers of less than or order k,, although the 
anisotropy may persist at higher wavenumbers through nonlinear effects (Holloway 
& Hendershott 1977; Basdevant et al. 1981). 

4.1 Flow regimes 
We can divide our simulated flows on the ,%-plane into three fairly well-defined 
regimes based on the values of two flow diagnostics. One of these is the vorticity 
kurtosis which, again, is a gross measure of spatial intermittency and an indicator for 
the presence of coherent vortices. The second diagnostic is the average anisotropy of 
the flow, defined as ( ( u 2 ) - ( w 2 ) ) / ( ( u 2 ) + ( w 2 ) ) ,  where u and w are the zonal 
(east-west) and meridional (north-south) velocities, respectively, and ( ) denotes an 
area average. 

The first flow regime occurs when k, is less than a value of approximately unity. 
In this case the flow is close to being indistinguishable from the p = 0 case, based on 
kurtosis and anisotropy values, as well as energy spectra and examination of maps 
of the vorticity and stream-function fields. This result agrees with Holloway’s (1984) 
decay experiments in that /3 is important in these types of simulations if the longest 
resolved waves can feel its presence, independent of the location of the spectral peak. 

As the value of k, is increased above unity the vorticity kurtosis drops sharply 
while the anisotropy remains low. The drop in kurtosis results from a reduction in the 
strength of the vortices relative to the background due to the ,%-effect actively 
radiating away vortex energy as Rossby waves. Even so, circular vortices are still 
recognizable in maps of vorticity (figure l b )  (plate l), and seem to be opposing the 
flow’s tendency to become anisotropic. The strongest vortices are now seen at  slightly 
smaller scales than for /? = 0, and are fewer in number. Though some larger-scale 
vortices may still be detected, their strengths have been substantially reduced. 

When k, is increased further, the anisotropy of the flow increases rapidly while the 
vorticity kurtosis levels off at  a value of around 3, indicating the existence of few (if 
any) coherent vortices. Examination of the vorticity and stream-function fields 
shows substantially fewer vortices than in the previous regimes. Those vortices that 
are present are substantially smaller and are superimposed on a noticeably non- 
isotropic background flow (figure l c ,  d )  (plate 1) .  Vortices become ever weaker, 
sparse and smaller in scale as k, increases toward the forcing range. 

The boundaries between the three flow regimes are not sharply defined, i.e. the 
transition can occur over a range of a few wavenumbers. In addition, each boundary 
varies its position depending on the particular forcing and dissipation parameters 
chosen for a given set of experiments, with the exception of the lowest transition 
which always occurs near kp = 1. The characteristics and wavenumber range of each 
flow regime can be seen in figure 5 ,  where kurtosis and anisotropy are plotted as 
functions of k, for two different sets of experiments. 

4.2 Energy spectra 
Although flows with /3 9 0 may become anisotropic, the isotropic energy spectrum 
(i.e. averaged over angles in wavenumber space) is still a useful tool. To a rough 
degree, the three flow regimes described above are reflected in the energy spectra. As 
mentioned above, energy spectra for k, < 1 are hard to distinguish from those with 
k, = 0, with dual spectral slopes for flows with coherent structures. As k, increases 
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above unity, the steeper, lower-wavenumber spectral range shallows as the vorticity 
kurtosis drops, further indicating that coherent vortices are responsible for steep 
slopes. The shallowing of the slope continues until it nears the slope of the higher- 
wavenumber range, which does not change in this regime. This regime seems to be 
similar to  the ‘clipping’ scheme used by Babiano et al. (1987), wherein all vortices 
had their amplitude artificially clipped down to some constant low value, resulting in 
a spectrum that approached k-3 as the arbitrary clipping value decreased. It differs 
from the addition of the /3-effect in that our dynamical clipping mechanism is now 
scale dependent, so we instead get a spectrum that approaches a uniform slope 
throughout the inertial range, yet remains steeper than k-3 (figure 6a) .  

When the system moves to the third flow regime (characterized by high 
anisotropy), the inertial-range spectral exponent (by now uniform) takes a value that 
is typically about halfway between -3  and - 4  (figure 66). The spectrum may either 
shallow with respect to  the spectrum in the second regime, as in figure 6(6),  or 
steepen, depending on the slope of the spectrum in the second regime. The anisotropy 
of the flow is especially apparent if we examine the spectra of zonal and meridional 
motions separately (figure 7 a) .  The appearance of anisotropy a t  wavenumbers 
smaller than kp is directly predicted by weakly nonlinear analysis theory (Rhines 
1975) ; i t  is essentially a consequence of the flow seeking both a large scale (by the 
upscale energy cascade) and a low frequency (by a wave instability mechanism). 
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However, the origin of the small-scale anisotropy is less obvious, because a simple 
scaling of the relative magnitudes of the /?-effect and the nonlinear terms (such as 
that done at the beginning of this section) implies that the 8-effect should not be 
directly important in the inertial range. In our simulations the anisotropy is largely 
constant in the inertial range (i.e. both spectra have the same slope). Similar results 
are to be found in the closure-model calculations of anisotropic turbulence by 
Herring (1975) and of ,&plane turbulence by Holloway & Hendershott (1977). 

To investigate the origin of the inertial-range anisotropy, we introduced an 
anisotropic forcing at low wavenumbers to the system, while keeping the dynamics 
in the inertial-range scales strictly isotropic. This is actually done by allowing the 8- 
effect to be non-zero only at low wavenumbers, setting its value in (2.4) to zero for 
all k above the forcing scales, thereby eliminating the possibility of the anisotropy 
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being generated at  those wavenumbers by the direct influence of an anisotropic term 
in the equations of motion. The system can now be thought of as non-rotating two- 
dimensional turbulence with a non-isotropic forcing confined to low wavenumbers. 
The energy spectra that result from such a calculation (figure 7h) maintain their 
anisotropy at  all scales, and show that the inertial-range anisotropy seen in 
simulations with the true /3-effect (figure 7a)  is not due to the direct action of /3 at  
those scales. Instead, plots of the vorticity field (figure l c ,  d )  seem to show long 
east-west filaments formed directly by large-scale anisotropic straining, implying 
that the anisotropy is non-locally transferred to the smaller scales. This in- 
terpretation agrees with closure theories of anisotropic turbulence (Herring 1975 ; 
Holloway & Hendershott 1977) which predict production of anisotropy a t  small 
scales due to large-scale straining which competes with the tendency for a return to 
isotropy among small-scale interactions. The former effect evidently dominates in 
these simulations. 

We may also add /3 to those simulations which in the absence of t9 produces spectra 
approximately proportional to k-3. In  this case, the spectrum steepens until the slope 
reaches a value approximately halfway between - 3  and -4, just as in the above 
case. Unfortunately, these experiments are dominated by bottom friction to such an 
extent that it is difficult to determine how the small amount of anisotropy that is 
present gets distributed among the different flow scales. However, if the mechanism 
for transfer of anisotropy is non-local straining, it is reasonable to suspect that  
anisotropy is likely to be present a t  all scales in the inertial range, as in the above 
cases. 

5. High-wavenumber forcing 
In this section, we examine the inverse cascade of energy to small wavenumbers. 

To maximize the extent of the possible inertial range, the forcing range is placed as 
near as possible to the maximum resolved wavcnumber, for example, Fk =k 0 for 
80 < Ikl < 84 for k,,, = 128, while still allowing a small enstrophy range at higher 
wavenumbers. This also minimizes the effect of the low-wavenumber energy 
dissipation range on the inertial-range dynamics. 

5.1 Isotropic Jlows 
Just as in our simulations forced at  low wavenumbers, coherent structures form a t  
the forcing scale and values of the vorticity kurtosis greater than 3 are found (figure 
8 b ) ,  though the values are smaller than for the low-wavenumber experiments. This 
is probably due to the close proximity of the forcing range to the dissipation range, 
resulting in fewer, less strong vortices. Further, there is no evidence that the cascade 
of energy to larger scales produces vortices a t  scales much larger than the forcing 
scale (figure l e )  (plate 1) .  

Typically, most of our simulations have energy spectra that are slightly steeper 
than the inertial-range prediction, 

E ( k )  = C, &%, (5.1) 

where e is the energy cascade rate (figure 8 a ) .  However, the differences in slope are 
so small that is possible to estimate a value for C,. We can determine E in a manner 
identical to that used to find the enstrophy cascade rate, using the calculate! spectral 
energy fluxes (Re Ximl  ~F J! ) .  Figure 8 ( d )  shows a plot of C,(k)  = E ( k )  s ( k ) - l b  which 
again has a fairly well-defined mean (C, = 5.8) with some superimposed noise. 
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FIGURE 8. Flow diagnostics from a simulation forced in the range 160 < k < 165. (a )  Time-averaged 
energy spectrum. (b) Time series of vorticity kurtosis (solid curve) and stream-function kurtosis 
(dashed curve) from a statistically steady portions of the ryn. (c) Time-averaged spectral energy 
flux, ~ ( k ) .  (d) The Kolmogorov constant C, (k )  = k%T(k)e(k)-S. The average value of C, is 5.8. 

In  contrast to the simulations of the enstrophy range, the value of C, seems to  be, 
at most, weakly dependent on forcing and dissipation parameters. We also find C, to 
be independent of numerical resolution, a t  least for k,,, = 128 and k,,, = 256. The 
values we find (between 5.5 and 6.5) are more or less consistent with closure-model 
predictions by Kraichnan (1971) (C, = 6.69), and with numerical simulations by 
Lilly (1972) (C, x 6). I n  more recent simulations, Herring & MeWilliams (1985) have 
found C, < 4.8 in a manner similar in the way we found C, = 5.8, and Frisch & Sulem 
(1984) found C, % 9 by using a least-squares fit to  the spectrum and average fluxes. 
(We obtain C, = 8 using the latter method.) However, the present study has much 
greater inertial-range resolution than any of the aforesaid direct numerical 
simulations. 

5.2 Anisotropic flows 
When the p-effect is added to  flows forced a t  high wavenumbers, the changes in 
behaviour are similar to those seen with forcing at low wavenumbers. The three flow 
regimes described in $4 are seen, with the first transition occurring in the vicinity of 
k, = 1. In  this case, however, the vorticity kurtosis remains significantly greater than 
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3 even when the anisotropy is high, but it does decrease steadily as k,  increases (figure 
9). This difference leads to a slightly more elaborate interpretation of the boundaries 
between the flow regimes. The anisotropy increases when kp approaches the energy 
peak in the spectrum. On the other hand, the vorticity kurtosis reaches a value of 3 
as k, approaches the enstrophy peak (which is approximately coincident with the 
forcing range). For flows forced at  relatively low wavenumbers, the energy and 
enstrophy peaks are approximately the same, so high anisotropy coincides with near- 
Gaussian vorticity kurtosis. For simulations forced a t  high wavenumbers, the energy 
peak remains at low wavenumbers, while the enstrophy peak is a t  high wavenumbers, 
explaining the presence of significantly non-Gaussian kurtosis accompanied by high 
anisotropy . 

As long as IC, is chosen to be small enough so that the inertial range can still be 
resolved (e.g. k, < 20), the slope of the inertial-range spectrum remains approxi- 
mately proportional to k-1, and the value of the constant C, is essentially unchanged. 
The inverse cascade of energy is effectively arrested at kfl ,  where energy accumulates. 
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Without explicitly introducing frictional processes (a non-zero a in (2 .5) )  energy 
continues to accumulate at this scale. This would actually cause the value of k,  to fall 
until it  lies within a low-wavenumber frictional subrange, whence equilibration can 
occur. 

The anisotropy of the flow is largely manifest a t  those wavenumbers smaller than 
k, (figure l ob ) .  However, in some contrast to the simulations forced at low 
wavenumbers, the anisotropy is much smaller in the energy inertial range than in the 
enstrophy range and even seems to approach zero a t  intermediate wavenumbers. We 
may again introduce anisotropic forcing to the system by allowing the p-effect to be 
non-zero only at low wavenumbers to investigate the transfer of anisotropy through 
the energy inertial range. Figure 10(a) shows a simulation identical to the one shown 
in figure 10 (b ) ,  except that p is zero for k > 20. Significant anisotropy is seen only at 
those wavenumbers where p enters the dynamics directly, implying that anisotropy 
is rather inefficiently transferred against the reverse energy cascade. 

6. Forcing at high and low wavenumbers 
Observations of the energy spectrum of the Earth’s atmosphere have revealed the 

existence of two well-defined spectral slopes at relatively large scales (Nastrom & 
Gage 1985). An enstrophy range with a slope of approximately k-3 driven by 
baroclinic instability is seen in the synoptic scales from about 600 to 3000 km. At the 
mesoscales ranging from a few to approximately 200 km, a possible energy range 
driven by smaller-scale convection is seen with a slope very close to k-i. Larsen, 
Kelley & Gage (1982) postulate the need for a continuous sink of energy and 
enstrophy to dispose of a possible buildup in the transition region between the two 
inertial ranges. On the other hand, closure-model calculations by Lilly (1989) have 
shown the coexistence of both inertial ranges without the need for dissipation. In  this 
section we investigate whether a stable coexistence of two inertial ranges is possible 
in direct numerical simulations of two-dimensional turbulence. 

Figure 1 1  shows the results of a simulation forced for 10 < k < 14 and for 
160 ,< k < 165. Both forcings are given the same correlation time, but the amplitude 
is five times greater for the high-wavenumber range. Although the lower- 
wavenumber inertial range is not particularly well resolved, the higher range 
(40 < k < 160) is well resolved and the energy spectrum has a slope of approximately 
-%. The Kolmogorov constant C, found in this range agrees with the value found for 
forcing at  high wavenumbers only. The lower-wavenumber range has a slope steeper 
than k-3, and coherent structures are seen in the vorticity field (figure 1 f) (plate l ) ,  
just as in the simulations forced only at  low wavenumbers. The energy and enstrophy 
fluxes are seen to be constant through most of the region between the forcing ranges 
(figure 11 b) .  In particular the constant upscale energy transfer continues through the 
steeply sloping ‘enstrophy ’ inertial range, and the enstrophy cascades down through 
the shallow ‘energy ’ inertial range. Dissipation is active only for k < 5 and k 3 200, 
so a sink is not present and not needed in the transition region between the two 
spectral slopes. 

In Lilly’s calculations, the transition from enstrophy to energy inertial-range 
slopes occurs approximately at a wavenumber defined as 

where 3 and E are the enstrophy and energy cascade rates, respectively, both taken 
positive. Aside from the phenomenological closure calculations Lilly gives, this 
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the spectral shape predicted by Leith's (1968) closure as demonstrated by Lilly (1989). ( b )  Time- 
averaged spectral energy flux ~ ( k )  (solid curve) and enstrophy flux v(k) (dashed curve). 

scaling wavenumber arrives simply from equating the energy and enstrophy inertial- 
range expressions (3.1) and (5.1), to within an constant factor. In our simulation, we 
find k, x 40, which is roughly in accord with the location of the change in spectral 
slope (figure lla). We can also compare our spectrum with Lilly's result based on 
Leith's (1968) diffusive closure model, 

E ( k )  = [(ek-i+ylc-i)/2B]g, (6.2) 
where B is a constant. The transition range in the spectrum from our simulation 
appears to be more abrupt than the gentle change in curvature of the closure 
spectrum (shown as the dashed line in figure 11 a ) ,  but the general shape between the 
forcing ranges are in good agreement, especially in the lc-8 range. However, in the 
light of our previous discussion about the inapplicability of inertial-range 
expressions, any disagreement in the lower range may be moot since the closure 
predicts k-3 for k 4 k,. In any case it is quite remarkable that downscale enstrophy 
transfers and upscale energy transfers can simultaneously coexist over the same 
wavenumbers, with identically zero dissipation. 

The coexistence of inertial ranges is not affected by the addition of the p-effect, 
though the position of the transition wavenumber k, may vary. As in the simulations 
forced only at low wavenumbers, there is large anisotropy in the smaller-wavenumber 
range. In contrast to the simulations forced only at high wavenumbers, there is also 
significant anisotropy in the approximately k-i range, possibly carried there by the 
non-zero enstrophy cascade that now exists in this range. 

7. Discussion 
In this study we have been concerned with the energy spectra of the enstrophy and 

energy inertial ranges in two-dimensional turbulence, the roles of coherent vortices 
and Rossby wave radiation, and the possible non-universality of the enstrophy 
range. In particular, it is often implicitly assumed that coherent vortices in 
forced-lissipative two-dimensional turbulence are the cause of spectral slopes 
steeper than the k-3 inertial-range prediction. In this study, we have introduced 
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various mechanisms - Rossby wave radiation, friction - that exert a destructive 
influence on the vortices, and examined the energy spectra that result. 

When the /?-effect was added to a system containing coherent vortices and with a 
steep spectrum, the vortices were readily destroyed by radiation of Rossby waves for 
sufficiently large kl. Often a shallower spectral slope, although still steeper than kP3, 
ensued ; typically, the energy spectra wcre seen to equilibrate in a range between 
k-3.3 and k-3.5. If the spectrum was already before the introduction of /? (say 
because of the nature of the low-wavenumber forcing and dissipation), then the /3- 
effect serves merely to inhibit enstrophy transfer to high wavenumbers (effectively 
by inhibiting energy transfer to low wavenumbers) and hence steepens the spectrum 
which again equilibrates around k-3.4. Thus, although the spectra with /? are typically 
not as steep as those with coherent vortices, the - 3 range is still not easily recovered. 

Finding that the /?-effect can shallow the spectrum apparently contradicts Rhines’ 
(1975) result that the addition of p tends to steepen the slope owing to inhibition of 
turbulent transfers. There are some important differences in these cases. Rhines 
reached his conclusion by considering an initial-value problem. However, analysis of 
initial tendencies of the flow as performed by Rhines are not obviously relevant to 
our statistically steady case. Second, the presence of coherent structures in our 
simulations inhibits turbulent transfers by removing a significant fraction of the 
vorticity from the active cascade. This effect is evidently more efficient in inhibiting 
the enstrophy transfer and steepening the slope than is the similar effect of /?. When 
/? is weak, the effect of the vortices is seen and the slope is steep; when /? is strong 
enough to destroy vortices the inhibition of the enstrophy cascade by /? is less than 
the inhibition by the vortices, and the slope is shallower. 

One should not conclude solely on the basis of two-dimensional or geostrophic 
turbulence arguments, that the energy spectrum of a true geophysical fluid (for 
example the Earth’s atmosphere) should have a slope of exactly k3, even for those 
scales that are expected to behave quasi-geostrophically. For not only do flows with 
coherent vortices have steep slopes, but so do many flows with significant /3-effect. 
Only for a system dominated by dissipation and having minimal /?-effect might we 
expect an approximately kP3 spectrum, a rather narrow parameter regime unlikely 
to be achieved in most geophysical flows. Furthermore, the range of scales over which 
the atmosphere behaves quasi-two-dimensionally is not significantly greater than the 
simulations presented herein. Thus, one cannot argue that because the atmosphere’s 
‘resolution’ is higher than any numerical model it will still yield a kP3 spectrum, 
because at  small scales the atmosphere behaves three-dimensionally. However, there 
is some evidence for an enstrophy cascade and a ke3 energy spectrum (Boer & 
Shepherd 1983; Nastrom & Gage 1985) in the atmosphere. Whether this is 
coincidental, or is due to some other physical process producing a scale-independent 
turnover time, remains unknown at this time. 

Phenomenologically, the inertial-range scalings in both two and three dimensions 
are obtained by assuming that energy or enstrophy transfer is spectrally local, in the 
sense that the energy cascade through a particular wavenumber depends only on the 
energy spectrum at that wavenumber, and not on the mechanisms of forcing or 
dissipation. For a k-g energy spectrum this assumption is a posteriori satisfied 
(Kraichnan 1971). However, a strict k-3 spectrum is non-local and almost self- 
inconsistent, since for a straining rate at  wavenumber k given by 
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the contributions of each octave to the integrand are all equal for a - 3  spectrum, 
implying non-locality. Using an eddy turnover time based on (7.1) leads of course to 
the log-corrected range. However, as soon as locality has been dropped, that 
spectrum becomes but one of many phenomenological possibilities, along with the 
intermittency-corrected spectra of Basdevant et al. (1981), rather than a result 
demanded of scaling. Now, for a spectrum shallower than -3, for example -$, the 
contributions are dominated by wavenumbers a t  the upper end of the integral, close 
to k ,  and locality is more assured. This suggests that a - 3  spectrum is close to the 
shallowest slope which is likely to be generally achieved for the enstrophy range : any 
shallower spectra will have more local enstrophy transfers, and hence satisfy the 
Kolmogorovian assumptions, but will then be disallowed by Kolmogorovian scaling 
arguments. However, a steeper spectrum may well have non-local enstrophy transfer 
and violate the locality assumption ; the scaling arguments then simply do not apply 
and a steep spectrum is not inconsistent. In this sense -3 spectra are not robust and 
form, rather, a shallowest limit on the slope. 

When approximate k-3 spectra do arise, we find that the ‘ constant ’ C, appearing 
in the inertial-range theories (3.1) does not appear to be universal if a local measure 
for the eddy turnover time is used. However, a slightly more general formulation of 
the inertial-range arguments leads to the recovery of universality, a t  least for the 
cases we have tested. It implies that the k-3 spectra arise from the small scales 
behaving like a passive scalar, with the local strain rate (7.1) completely dominated 
by the forcing scale. 

Nonlocality is prevalent in the simulations yielding steeper spectra. In our 
simulations the presence of coherent structures is always associated with the 
spectrum being steeper than the classical prediction, although whether coherent 
structures ‘cause’ the steep spectra and the non-locality, or whether they are simply 
a consequence of non-locality, has not been clarified. Non-locality may be interpreted 
physically as a relatively large-scale vortex straining much smaller scales as if it were 
a mean shear, an interpretation which seems to apply to anisotropic flows as well. 
Simulations that are forced to be anisotropic a t  large scales appear to transfer their 
anisotropy directly to small scales by straining out long filaments with a preferred 
orientation. However, phenomenological theories of intermittent two-dimensional 
turbulence (e.g. Basdevant et al. 1981) do caution against interpretation of non-local 
straining as implying non-localness of enstrophy transfer, since the ‘active ’ spectrum 
will always be shallower than k-3. 

The reverse energy cascade, on the other hand, is much more robust in its 
agreement with classical inertial-range theory. We find that the constant C, defined 
by inertial-range theories (5.1) is largely independent of model forcing parameters. 
The introduction of the ,&effect does not change the inertial-range behaviour for 
k > k!, and the resulting anisotropy is seen to remain mostly a t  wavenumbers smaller 
than k!. While we have found that the energy spectrum for the inverse cascade of 
energy to large scales is close to k-t, the mechanism behind this cascade is still 
somewhat unclear. It is often supposed that energy is transferred upscale by small 
vortices coalescing into larger vortices. We do not see direct evidence supporting this, 
since most of the vortices in these simulations are seen at scales that are of the order 
of the forcing scale and smaller, and not larger. This does not necessarily imply that 
this process is unimportant, since some mergers are undoubtedly occurring, resulting 
in vortices of slightly larger scale. It is of course possible that such mergers produce 
motions of larger scale that simply are not recognizable as vortices in maps of the 
vorticity field. 
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Finally, we presented simulations of two-dimensional turbulence with forcing at 
two different scales. An inverse energy cascade to low wavenumbers, and an 
enstrophy cascade to high wavenumbers, can coexist over the same range of 
wavenumbers with a fairly distinct change in slope within, coinciding roughly with 
the scaling wavenumber (6.1). No dissipation is needed in intermediate wavenumbers 
in order to achieve equilibration. The simultaneous existence of these ranges, with 
apparently quite different dynamics, serves only to emphasize our limited 
understanding of the precise mechanisms of energy and enstrophy transfer in the 
inertial ranges. 
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